Premium

Získejte všechny články
jen za 89 Kč/měsíc

Hmota a energie.

Může se hmota změnit v energii? Může se změnit energie ve hmotu? Může hmota látková vzniknout z temné hmoty? Může být temná energie základní energie vesmíru? Na tyto otázky se pokusím odpovědět. 
Hmota je důležitý pojem fyziky, jeho význam se však zejména ve 20. století výrazně proměnil. Možnosti fyzikálního zkoumání dříve umožňovaly rozlišovat pouze makroskopické mechanické, optické a termické vlastnosti různých forem hmoty. Moderní obory fyziky nabídly nástroje k podrobnějšímu zkoumání vnitřní hierarchické struktury (nejprve molekulární a atomární úroveň, později subatomární úrovně) a odhalily společnou podstatu některých forem, dříve považovaných za odlišné (např. světlo a radiové vlny). Vlnový charakter částic a částicový charakter interakcí odhalený kvantovou fyzikou je pak důvodem, že se ve fyzikálním chápání pojem hmoty používá ve dvou hierarchicky odlišných významech:   Wikipedie.

Standardní model hmoty ve vesmíru.

 Standardní model částic a interakcí je teorie, která popisuje silnou, slabou a elektromagnetickou interakci a elementární částice, které tvoří veškerou hmotu. Byla zformulována v letech 1970 až 1973. Jedná se o kvantovou teorii pole, jež je konzistentní jak s kvantovou mechanikou tak i se speciální teorií relativity. Standardní model byl v roce 2004 nejobecnějším výsledkem dosavadního fyzikálního výzkumu.

Přehled vzájemného ovlivňování mezi částicemi popisovanými Standardním modelem. Obrázek 1. Wikipedie.

 

Veškerá známá hmota ve vesmíru se skládá ze šesti druhů kvarků a šesti druhů leptonů a všechny jevy, které ve vesmíru pozorujeme, dovedeme vysvětlit pomocí čtyř druhů interakcí.

Dodnes jsou výsledky téměř všech pozorování i experimentů zkoumajících interakce popsané standardním modelem v souladu s předpoklady a odvozenými důsledky této teorie. Standardní model je schopen adekvátního popisu, často však není schopen vysvětlit podstatu těchto jevů. Také téměř všechny případy pozorovaných částic lze popsat částicemi Standardního modelu nebo jejich vázanými stavy. Wikipedie.

Dříve se hmota látková, čili látka, popisovala jako soubor atomů, které se skládaly z atomových jader a elektronů. S vybudováním velkého hadronového urychlovače, byly objeveny další částice.

Existují opravdu tyto částice, nebo je to jen virtuální model?  Srážením milionů protonů vznikne nespočet fragmentů. Jak se v nich vyznat? Můžeme si to představit, jako když praštíme cihlou o druhou cihlu. Cihly se rozbijí na mnoho fragmentů. Když tento pokus budeme opakovat, tak zjistíme, že se znovu cihly rozbijí, ale fragmenty jsou jiné. Pokud budeme tento proces opakovat tisíc krát, milion krát a stále dokola a budeme srovnávat fragmenty, tak zjistíme, že se určitý počet fragmentů opakuje, takže je můžeme i pojmenovat a ty co se neopakují, tak vyřadíme. Něco podobného dochází i v urychlovači, ale místo cihel se srážejí protony a ty fragmenty vědci pojmenovali jako kvark-gluonové plazma, nebo "kvarková polévka", nebo zkráceně "kvagma".

Obrázek 2. Rozpad protonů na fragmenty. Wikipedie.

Velký hadronový urychlovač (Large Hadron Collider – LHC; doslovný překlad Velký hadronový srážeč) je největší urychlovač částic na světě, pracovat začal 10. září 2008.[1] Je umístěn v podzemí na území mezi pohořím Jura ve Francii a Ženevským jezerem ve Švýcarsku. Na jeho návrhu se podílelo přes 2000 vědců ze 34 zemí světa.  Wikipedie

Obrázek 3.  Zchlazené plynné rubidium.  Wikipedie.

 

 Indický fyzik Šatendranáth Bose tento nízkoenergetický materiál objevil v roce 1925 a o 70 let později jej vyrobili Eric Cornell a Carl Wieman v laboratořích Coloradské university. Plynné rubidium bylo zchlazeno na 170 nanokelvinů (nK). Cornell, Wieman a Wolfgang Ketterle z Massachusettského technologického institutu (MIT) byli v roce 2001 za tento výkon oceněni Nobelovou cenou za fyziku.

Hypotetické částice.

Různé fyzikální teorie předpovídají existenci dalších elementárních částic. Jedná se především o částice předpovídané na základě supersymetrie: skvarky, sleptony (např. selektron), gluino, neutralina a chargina. Mezi hypotetické částice lze v současné chvíli řadit také graviton.

Proč se řadí GRAVITON, mezi hypotetické částice? Vysvětlení je jednoduché. Zatím všechny teorie gravitace jsou založeny na vlastnosti hmoty, ale doposud se nenašla částice, která by tuto vlastnost potvrdila.

 

Temná hmota či skrytá hmota nebo též skrytá látka[2] je označení hypotetické formy hmoty, jejíž existence by vysvětlovala nesrovnalosti mezi některými skutečně pozorovanými a vypočítanými hodnotami z modelů. O povaze chybějící hmoty existuje množství teorií, většina z nich se shoduje na faktu, že ji lze ve vesmíru pozorovat jen díky jejímu gravitačnímu vlivu na okolní objekty tvořené běžnou „svítící“ hmotou, ale neemituje elektromagnetické záření. Odtud její označení jako temná hmota.  Wikipedie

Když si dáme dohromady poznatek, že temná hmota působí jako gravitační médium a není možno ji nikterak identifikovat a graviton se může podílet na gravitaci, jako nejmenší polní částice, potom nám z toho logicky vyplívá, že temná hmota se skládá z nekonečného počtu gravitonů.

Temná energie

Z Wikipedie, otevřené encyklopedieGrafické znázornění předpokládaného rozložení hmoty a energie ve vesmíru v současné době a před 13,7 miliardami let. Zásadní nedostatek, neb spíš chyba tohoto grafu je, že sčítá temnou hmotu s temnou energii. Sčítat hrušky s jablky je zásadní matematická chyba.   Wikipedie

Temná energie nebo také skrytá energie[1] je hypotetická energie rovnoměrně rozložená v prostoru (kosmologická konstanta) nebo nerovnoměrně rozložená (kvintesence), zavedená jako teoretický koncept pro vysvětlení současného zrychlování rozpínání se vesmíru. Toto zrychlování bylo objeveno při proměřování rudého posuvu ve spektrech vzdálených supernov (v r. 2011 byla za objev udělena Nobelova cena za fyziku). Přestože temná energie s časem roste, aby se rozpor v modelu a pozorování vysvětlil, neznamená to, že pro fixní objem prostoru je porušen zákon zachování energie, protože gravitační energie rozpínáním klesá. Wikipedie      

Podstata temné energie je zatím neznámá. Bylo navrženo několik fyzikálních interpretací temné energie, některá vysvětlení pro pozorování zrychleného rozpínání se dokonce pokoušejí nutnost zavedení temné energie úplně vyloučit.   Wikipedie

Velkým kandidátem na zdroj temné energie byla energie vakua. Problémem je, že její hodnota, naměřená při mikroskopických experimentech i vypočtená z kvantové teorie pole, je o 120 řádů větší, než je potřeba pro vysvětlení projevů temné energie naměřených z velkoškálových experimentů.  Wikipedie

Co říci na závěr. Teorií o fungování vesmíru  máme mnoho, avšak mnohé odporují jiným a jiné vyvracejí mnohé. Stále se dělají chyby, když se popisuje hmota, která se mění v energii a energie z které vzniká hmota. Vždy si musíme uvědomit, že je hmota a její pohyb, čili pohyb hmoty je energie a to pohyb zrychlený. Vždy z hmoty může vzniknout jen hmota a z energie může vzniknout pouze jiná energie.

Vše co jsem napsal jsou pouze moje originální  postřehy jak funguje vesmír a nikomu to nevnucuji, protože každý může věřit čemu chce.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Autor: Julius Maksa | neděle 8.12.2019 18:31 | karma článku: 14,31 | přečteno: 838x
  • Další články autora

Julius Maksa

Gravitační teorie Nikolase Fatio de Duilliera.

Nicolas Fatio de Duillier představil první verzi svých myšlenek o gravitaci v dopise Christiaanovi Huygensovi v roce 1690. Bezprostředně poté si přečetl její obsah na zasedání Královské společnosti v Londýně.

17.9.2020 v 14:02 | Karma: 8,76 | Přečteno: 619x | Diskuse| Věda

Julius Maksa

Le Sageova teorie gravitace.

Le Sageova teorie gravitace je kinetická teorie gravitace, kterou původně navrhl Nicolas Fatio de Duillier v roce 1690 a později Georges-Louis Le Sage v roce 1748. Proč se tato teorie neujala. Pokusím se o vysvětlení.

8.9.2020 v 13:42 | Karma: 9,42 | Přečteno: 593x | Diskuse| Věda

Julius Maksa

Kvasary a magnetary.

Popisuje dnešní kosmologie věrohodně kvasary a magnetary? Jsou představy dnešních fyziků o vzniku elektromagnetických vln, věrohodně vysvětlené, nebo se opět vychází z bludných představ minulého století? Pokusím se odpovědět.

4.9.2020 v 22:47 | Karma: 8,74 | Přečteno: 595x | Diskuse| Věda

Julius Maksa

Pulsary a gravitační vlny.

Jsou opravdu pulsary přírodní útvary, nebo to jsou umělé vesmírné majáky, podle kterých se orietují mimozemští vesmírní cestovatelé? Jaký je rozdíl, mezi vlnami pulsarů a gravitačními vlnami ? Pokusím se na tyto otázky odpovědět.

25.8.2020 v 17:46 | Karma: 9,21 | Přečteno: 463x | Diskuse| Věda

Julius Maksa

Kontinuální a vlnová rychlost částic.

Jaký je rozdíl, mezi kontinuální rychlostí částic a vlnovou rychlostí částic? Jaký je rozdíl, mezi kinetickou energií přímočarého pohybu a kinetickou energií rotačního pohybu? Existuje potenciální energie, nebo je to jen berlička?

3.8.2020 v 16:07 | Karma: 8,91 | Přečteno: 503x | Diskuse| Věda

Julius Maksa

Teplo z fúze.

Můžeme dosáhnout vznik tepelné energie pouze tím, že budeme zahřívet vodík, až nastane jaderná fúze a tím získáme další tepelnou energii? Vzniká teplo ve Slunci zahříváním hmoty? Může vzniknout jaderá fúze ve vakuu?

28.7.2020 v 23:00 | Karma: 10,86 | Přečteno: 643x | Diskuse| Věda

Julius Maksa

Neutrina ze Slunce.

Vzniká tepelná energie ve Slunci z hmoty, nebo pomocí hmoty? Vzniká tepelná energie až z fúze, nebo i před fúzí? Může se vůbec změnit hmota na energii, nebo je to nesmysl? Pokusím se to vysvětlit a vyvrátit bludy.

17.7.2020 v 12:54 | Karma: 10,16 | Přečteno: 376x | Diskuse| Věda

Julius Maksa

Neutrina č.1.

Jsou neutrina tak záhadné částice, jak se uvádí? Mohou neutrina procházet naší planetou? Můžou za vznik neutrin atomové elektrárny a atomové bomby? Dopadají na naši planetu neutrina i z vesmíru a proč? Odpovím postupně na všechno.

11.7.2020 v 14:32 | Karma: 12,68 | Přečteno: 577x | Diskuse| Věda

Julius Maksa

Věčný a nekonečný vesmír.

Musel vesmír vzniknout? Nemůže jednoduše vesmír existovat věčně a být nekonečný? Když nejde hmotu zničit, ani stvořit, nemůže platit ani Velký třesk. Ale z čeho hmota látková (látka), neustále vzniká? Dá se tato záhada vysvětlit?

8.7.2020 v 21:38 | Karma: 9,00 | Přečteno: 508x | Diskuse| Věda

Julius Maksa

Vznik a zánik vesmíru 3.

Rozpíná se vesmír? Může za rozpínání vesmíru temná hmota, nebo temná energie? Můžeme pozorováním galaxií určit, jestli se vesmír ještě rozpíná, nebo rozpínal? Není podivné, že se vesmír rozpíná od naší Země jako od středu vesmíru?

17.6.2020 v 13:13 | Karma: 13,39 | Přečteno: 460x | Diskuse| Věda

Julius Maksa

Vznik a zánik vesmíru 2.

Vznikl vesmír velkým třeskem? Je teorie velkého třesku reálná, nebo je to představa bludná? Mohl vzniknout vesmír z ničeho? Byl vesmír na počátku nesmírně horký? Byl vůbec nějaký počátek, nebo existoval vesmír vždy?

14.6.2020 v 13:26 | Karma: 10,63 | Přečteno: 454x | Diskuse| Věda

Julius Maksa

Vznik a zánik vesmíru 1.

Vznikl vesmír tak, jak popisuje teorie velkého třesku? Mohla veškerá hmota vzniknout z ničeho? Je možné, aby hmota vznikla z energie? Je teorie velkého třesku reálná, nebo ji můžeme zařadit do sci-fi?

26.5.2020 v 12:40 | Karma: 14,50 | Přečteno: 783x | Diskuse| Věda

Julius Maksa

Vesmír- Universum 3.

Je popis síly správný? Víme jak síla vzniká? Potřebuje síla energii, nebo energie je důsledek síly? Vystačí si kvantová fyzika bez síly? Je možná gravitace bez síly, pouze deformováním časoprostoru? Pokusím se logicky odpovědět.

10.5.2020 v 13:44 | Karma: 5,78 | Přečteno: 288x | Diskuse| Věda

Julius Maksa

Vesmír- Universum 2.

Že vesmír není prázdný je hotová věc. Myslíme tím hvězdy, planety a jiné smetí? Tak to je jasné. Ale co to mezi, tedy prostor? Má smysl říkat zakřivený časoprostor? Není lepší říkat energiprostor, tedy gravitonový éter? Co je čas?

3.5.2020 v 15:46 | Karma: 10,39 | Přečteno: 358x | Diskuse| Věda

Julius Maksa

Vesmír-Universum 1.

Jsou údaje o vesmíru pravdivé? Můžou se vědci ve svých teoriích mýlit? Je vesmír nekonečný, nebo konečný? Je pravda, že se vesmír rozpíná? Vznikl vesmír velkým třeskem? Pokusím se na tyto otázky odpovědět postupně a logicky.

28.4.2020 v 16:59 | Karma: 8,80 | Přečteno: 436x | Diskuse| Věda

Julius Maksa

Koule ve vesmíru.

Proč mají hvězdy kulovitý tvar? Proč mají větší planety rovněž kulovitý tvar? Proč se šíří veškeré vlny v kuloplochách? Proč mají kapky vody kulový tvar? Proč mají i atomy kulovitý tvar? Pokusím se odpovědět originálním způsobem.

11.4.2020 v 14:00 | Karma: 7,35 | Přečteno: 536x | Diskuse| Věda

Julius Maksa

Proč explodují supernovy?

Běžně se v kosmologii uvádí, že supernovy exploduji, když hvězda dospěje ke konci svého života, a dojde k fúzní reakci, jako u vodíkové bomby. Je takové tvrzení reálné? Myslím, že není, protože ve hvězdě se stane něco jiného.

25.3.2020 v 17:11 | Karma: 10,69 | Přečteno: 884x | Diskuse| Věda

Julius Maksa

Časoprostor, nebo gravitonový éter?

Je časoprostor reálný, nebo je to pohádka SCI-FI vědce? Proč byl zavrhnut éter a ne časoprostor? Proč Albert Einstein spojil čas s prostorem a ne s hmotou? Může existovat ještě něco jiného, než hmota a její pohyb? Dobrá otázka.

29.2.2020 v 14:36 | Karma: 14,26 | Přečteno: 1512x | Diskuse| Věda

Julius Maksa

Nekonečný vesmír

Může být vesmír nekonečný? Je vůbec možné, pohybovat se vesmírem po přímce? Pohybuje se světlo, tedy elektromagnetické vlnění přímočaře? Můžou existovat multivesmíry? Nebo existuje pouze jeden vesmír. Jak je veliký náš vesmír?

19.2.2020 v 16:38 | Karma: 14,79 | Přečteno: 826x | Diskuse| Věda

Julius Maksa

Síla, zrychlení a energié.

Má síla něco společného se zrychlením? Můžeme mluvit o energii, kdyby tam nehrála roli síla, nebo zrychlení? Jsou síla, zrychlení a energie vlastnosti hmoty, nebo jsou to vlastnosti prázdného prostoru, čili gravitonového éteru?

3.2.2020 v 22:26 | Karma: 7,84 | Přečteno: 380x | Diskuse| Věda
  • Počet článků 58
  • Celková karma 0
  • Průměrná čtenost 873x
Jak funguje " UNIVERSUM?". Snažím se popsat srozumitelnou formou děje, které neustále probíhají ve vesmíru, tak i na Zemi. Ale od toho máme fyziku, teorie a zákony, podle kterých funguje  svět.

Není to obráceně, že universum má své zákony a zákonitosti a fyzika je pouze popisuje, ne vždy správně? Proto se může zdát, že popisuji vesmírné děje jinak, než současná fyzika.

Seznam rubrik